
Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Chapter 5 : Microprocessor(Architecture

and Programming-16 bit-8086).

Register organization

A register is a very small amount of fast memory that is built in the CPU
(or Processor) in order to speed up the operation. Register is very fast
and efficient than the other memories like RAM, ROM, external memory
etc,. That’s why the
registers occupied the
top position in memory
hierarchy model.

The 8086
microprocessor has a
total of fourteen
registers that are
accessible to the
programmer. All these
registers are 16-bit in
size. The registers of
8086 are categorized
into 5 different groups.

a) General registers
b) Index registers
c) Segment registers
d) Pointer registers
e) Status Register
d) General Registers

All general registers of the 8086 microprocessor can be used for
arithmetic and logic operations. These all general registers can be used
as either 8-bit or 16-bit registers. The general registers are:

i. AX (Accumulator):
AX is used as 16-bit accumulator. The lower 8-bits of AX are
designated to use as AL and higher 8-bits as AH. AL can be used as
an 8-bit accumulator for 8-bit operation.

This Accumulator used in arithmetic, logic and data transfer
operations. For manipulation and division operations, one of the
numbers must be placed in AX or AL.

ii. BX (Base Register):
BX is a 16 bit register, but BL indicates the lower 8-bits of BX and BH
indicates the higher 8-bits of BX. The register BX is used as address
register to form physical address in case of certain addressing modes
(ex: indexed and register indirect).

iii. CX (Count Register):
The register CX is used default counter in case of string and loop
instructions. Count register can also be used as a counter in string
manipulation and shift/rotate instruction.

iv. DX (Data Register):
DX register is a general purpose register which may be used as an
implicit operand or destination in case of a few instructions. Data
register can also be used as a port number in I/O operations.

e) Segment Register:

The 8086 architecture uses the concept of segmented memory. 8086 can
able to access a memory capacity of up to 1 megabyte. This 1 megabyte
of memory is divided into 16 logical segments. Each segment contains 64
Kbytes of memory. This memory segmentation concept will discuss later
in this document.

There are four segment registers to access this 1 megabyte of memory.

The segment registers of 8086 are:

• CS (Code Segment):
Code segment (CS) is a 16-bit register that is used for addressing
memory location in the code segment of the memory (64Kb), where
the executable program is stored. CS register cannot be changed
directly. The CS register is automatically updated during far jump, far
call and far return instructions.

• Stack segment (SS)
Stack Segment (SS) is a 16-bit register that used for addressing stack
segment of the memory (64kb) where stack data is stored. SS register
can be changed directly using POP instruction.

• Data segment (DS)
Data Segment (DS) is a 16-bit register that points the data segment of
the memory (64kb) where the program data is stored. DS register can
be changed directly using POP and LDS instructions.

• Extra segment (ES):
Extra Segment (ES) is a 16-bit register that also points the data
segment of the memory (64kb) where the program data is stored. ES
register can be changed directly using POP and LES instructions.

f) Index Registers

The index registers can be used for arithmetic operations but their use is
usually concerned with the memory addressing modes of the 8086
microprocessor (indexed, base indexed and relative base indexed
addressing modes).

The index registers are particularly useful for string manipulation.

• SI (Source Index):
SI is a 16-bit register. This register is used to store the offset of source
data in data segment. In other words the Source Index Register is
used to point the memory locations in the data segment.

• DI (Destination Index):
DI is a 16-bit register. This is destination index register performs the
same function as SI. There is a class of instructions called string
operations that use DI to access the memory locations in Data or Extra
Segment.

g) Pointer Registers:

Pointer Registers contains the offset of data(variables, labels) and

instructions from their base segments (default segments).8086
microprocessor contains three pointer registers.

i. SP (Stack Pointer):
Stack Pointer register points the program stack that means SP stores
the base address of the Stack Segment.

ii. BP (Base Pointer):
Base Pointer register also points the same stack segment. Unlike SP,
we can use BP to access data in the other segments also.

iii. IP (Instruction Pointer):
The Instruction Pointer is a register that holds the address of the next
instruction to be fetched from memory.It contains the offset of the next
word of instruction code instead of its actual address

h) Status Register:

The status register also called as flag register. The 8086 flag register
contents indicate the results of computation in the ALU. It also contains
some flag bits to control the CPU operations.

Flag register is 16-bit register with only nine bits that are implemented.
Six of these are status flags. The complete bit configuration of 8086 is
shown in the figure.

SF (Sign Flag): This flag represents sign of the result.
0-Result is Positive

1-Result is Negative
ZF (Zero Flag): ZF is set if the result produced by an instruction is zero.
Otherwise, ZF is reset.
PF (Parity Flag): This flag is set to 1, if the lower byte of the result
contains even number of 1’s.
0- Odd parity
1- Even parity
CF (Carry Flag)

This flag is set, when there is a carry out of MSB in case of addition or
borrow in case of subtraction.
0- No Carry/ Barrow
1- Carry/ Barrow
TF (Trap Flag):

If this flag is set, the processor enters the single step execution mode.
When in the single-step mode, it executes an instruction and then jumps
to a special service routine that may determine the effect of executing the
instruction. This type of operation is very useful for debugging programs.
IF (Interrupt Flag):

If this flag is set, the maskable interrupts are recognized by the CPU,
otherwise they are ignored.
DF (Direction Flag):

This is used by string manipulation instructions.
0- The string is processed beginning from the lowest address to the
highest address, i.e., auto incrementing mode.
1- The string is processed from the highest address towards the lowest
address, i.e., auto incrementing mode.
AC (Auxiliary Carry Flag):
This is set when there is a carry from the lowest nibble (i.e, bit three
during addition), or borrow for the lowest nibble (i.e, bit three, during
subtraction).
OF(Over flow Flag):

This flag is set, if an overflow occurs, i.e, if the result of a signed
operation is large enough to accommodate in a destination register.

General bus operation of 8086
• The 8086 has a combined address and data bus commonly referred

as a time multiplexed address and data bus.

• The main reason behind multiplexing address and data over the

same pins is the maximum utilisation of processor pins and it

facilitates the use of 40 pin standard DIP package.

• The bus can be demultiplexed using a few latches and transreceivers,

when ever required.

• Basically, all the processor bus cycles consist of at least four clock

cycles. These are referred to as T1, T2, T3, T4. The address is

transmitted by the processor during T1. It is present on the bus only

for one cycle.

• The negative edge of this ALE pulse is used to separate the address

and the data or status information. In maximum mode, the status

lines S0, S1 and S2 are used to indicate the type of operation.

• Status bits S3 to S7 are multiplexed with higher order address bits

and the BHE signal. Address is valid during T1 while status bits S3 to

S7 are valid during T2 through T4.

Maximum mode

• In the maximum mode, the 8086 is operated by strapping the

MN/MX pin to ground.

• In this mode, the processor derives the status signal S2, S1, S0.

Another chip called bus controller derives the control signal using

this status information .

• In the maximum mode, there may be more than one microprocessor

in the system configuration.

Minimum mode

• In a minimum mode 8086 system, the microprocessor 8086 is

operated in minimum mode by strapping its MN/MX pin to logic 1.

• In this mode, all the control signals are given out by the

microprocessor chip itself.

• There is a single microprocessor in the minimum mode system.

Memory Organization

As far as we know 8086 is 16-bit processor that can supports 1Mbyte
(i.e. 20-bit address bus: 220) of external memory over the address
range 0000016 to FFFFF16. The 8086 organizes memory as individual
bytes of data. The 8086 can access any two consecutive bytes as a
word of data. The lower-addressed byte is the least significant byte of
the word, and the higher- addressed byte is its most significant byte.

Figure: Part of 1 Mbyte Memory

The above figure represents: storage location of address 0000916
contains the value 716, while the location of address 0001016 contains
the value 7D16. The 16-bit word 225A16is stored in the locations
0000C16 to 0000D16
The word of data is at an even-address boundary (i.e. address of least
significant byte is even) is called aligned word. The word of data is at
an odd-address boundary is called misaligned word, as shown in
Figure below.

Figure: Aligned and misaligned word

To store double word four locations are needed. The double word that
it’s least significant byte address is a multiple of 4 (e.g. 0 16, 416, 816
...) is called aligned double word. The double word at address of non-
multiples of 4 is called misaligned double word shown in Figure below.

Figure: Aligned and misaligned double word

a) Memory segmentation

The size of address bus of 8086 is 20 and is able to address 1 Mbytes
() of physical memory, but all this memory is not active at one time.
Actually, this 1Mbytes of memory are partitioned into 16 parts named
as segments. Size of the each segment is 64Kbytes (65,536).
Only four of these segments are active at a time:

v. Code segment holds the program instruction codes

vi. Stack segment is used to store interrupt and subroutine return
addresses

vii. Data segment stores data for the program

viii. Extra segment is an extra data segment (often used for shared data)

ix. Each of these segments are addressed by an address stored in
corresponding segment registers: CS(code segment), SS(stack
segment), DS(data segment), and ES(extra segment). These registers
contain a 16-bit base address that points to the lowest addressed byte
of the segment. Because the segment registers cannot store 20 bits,
they only store the upper 16 bits. The BIU takes care of this problem
by appending four 0's to the low-order bits of the segment register. In
effect, this multiplies the segment register contents by 16.

The segment registers are user accessible, which means that the
programmer can change the content of segment registers through
software.

b) Programming model:
How can a 20-bit address be obtained, if there are only 16-bit registers?
However, the largest register is only 16 bits (64k); so physical addresses
have to be calculated. These calculations are done in hardware within the
microprocessor.
The 16-bit contents of segment register gives the starting/ base address
of particular segment. To address a specific memory location within a
segment we need an offset address. The offset address is also 16-bit
wide and it is provided by one of the associated pointer or index register.

Figure: Software model of 8086 microprocessor

To be able to program a microprocessor, one does not need to know all
of its hardware architectural features. What is important to the
programmer is being aware of the various registers within the device and
to understand their purpose, functions, operating capabilities, and
limitations.

The above figure illustrates the software architecture of the 8086
microprocessor. From this diagram, we see that it includes fourteenl6-bit
internal registers: the instruction pointer (IP), four data registers (AX, BX,
CX, and DX), two pointer registers (BP and SP), two index registers (SI
and DI), four segment registers (CS, DS, SS, and ES) and status register
(SR), with nine of its bits implemented as status and control flags.

The point to note is that the beginning segment address must begin at an
address divisible by 16.Also note that the four segments need not be
defined separately. It is allowable for all four segments to completely
overlap (CS = DS = ES = SS).

c) Logical and Physical Address

Addresses within a segment can range from address 00000h to address
0FFFFh. This corresponds to the 64K-bytelength of the segment. An
address within a segment is called an offset or logical address.

A logical address gives the displacement from the base address of the
segment to the desired location within it, as opposed to its "real" address,

which maps directly anywhere into the 1 MByte memory space. This
"real" address is called the physical address.

What is the difference between the physical and the logical address?
The physical address is 20 bits long and corresponds to the actual binary
code output by the BIU on the address bus lines. The logical address is
an offset from location 0 of a given segment.

You should also be careful when writing addresses on paper to do so
clearly. To specify the logical address XXXX in the stack segment, use
the convention SS:XXXX, which is equal to [SS] * 16 + XXXX.

Logical address is in the form of: Base Address: Offset
Offset is the displacement of the memory location from the starting
location of the segment.
To calculate the physical address of the memory, BIU uses the following
formula:

Physical Address = Base Address of Segment * 16 + Offset

Example:
The value of Data Segment Register (DS) is 2222H.

To convert this 16-bit address into 20-bit, the BIU appends 0H to the LSB
(by multiplying with 16) of the address. After appending, the starting
address of the Data Segment becomes 22220H.

Data at any location has a logical address specified as:2222H: 0016H

Where 0016H is the offset, 2222 H is the value of DS
Therefore the physical address:22220H + 0016H
: 22236 H

The following tables describes the default offset values to the
corresponding memory segments.

Some of the advantages of memory segmentation in the 8086 are as
follows:

• With the help of memory segmentation a user is able to work with
registers having only 16-bits.

• The data and the user’s code can be stored separately allowing for
more flexibility.

• Also due to segmentation the logical address range is from 0000H to
FFFFH the code can be loaded at any location in the memory.

d) Physical memory organization:
The 8086’s 1Mbyte memory address space is divided in to two
independent 512Kbyte banks: the low (even) bank and the high (odd)
bank. Data bytes associated with an even address (0000016, 0000216,
etc.) reside in the low bank, and those with odd addresses (0000116,
0000316, etc.) reside in the high bank.

Address bits A1 through A19 select the storage location that is to be
accessed. They are applied to both banks in parallel. A0and bank high
enable (BHE) are used as bank-select signals.

The four different cases that happen during accessing data:
Case 1: When a byte of data at an even address (such as X) is to be
accessed:

• A0 is set to logic 0 to enable the low bank of memory.

• BHE is set to logic 1 to disable the high bank.

Case 2: When a byte of data at an odd address (such as X+1) is to be
accessed:

iv. A0is set to logic 1 to disable the low bank of memory.

v. BHE is set to logic 0 to enable the high bank.

Case 3: When a word of data at an even address (aligned word) is to be
accessed:

• A0 is set to logic 0 to enable the low bank of memory.

• BHE is set to logic 0 to enable the high bank.

Case 4: When a word of data at an odd address (misaligned word) is to
be accessed, then the 8086 need two bus cycles to access it:
a) During the first bus cycle, the odd byte of the word (in the high bank) is
addressed

• A0 is set to logic 1 to disable the low bank of memory

• BHE is set to logic 0 to enable the high bank.

b) During the second bus cycle, the odd byte of the word (in the low bank)
is addressed

1. A0is set to logic 0 to enable the low bank of memory.

2. BHE is set to logic 1 to disable the high bank.

Minimum Mode 8086 System

• The microprocessor 8086 is operated in minimum mode by strapping its

MN/MX pin to logic 1.

• In this mode, all the control signals are given out by the microprocessor

chip itself. There is a single microprocessor in the minimum mode system.

• The remaining components in the system are latches, transreceivers, clock

generator, memory and I/O devices.

• Latches are generally buffered output D-type flip-flops like 74LS373 or

8282. They are used for separating the valid address from the multiplexed

address/data signals and are controlled by the ALE signal generated by

8086.

• Trans receivers are the bidirectional buffers and some times they are

called as data amplifiers. They are required to separate the valid data from

the time multiplexed address/data signals. They are controlled by two

signals namely, DEN and DT/R.

• The DEN signal indicates the direction of data, i.e. from or to the

processor.

• The system contains memory for the monitor and users program storage.

Usually, EPROM are used for monitor storage, while RAM for users

program storage. A system may contain I/O devices.

• The opcode fetch and read cycles are similar. Hence the timing diagram

can be categorized in two parts, the first is the timing diagram for read

cycle and the second is the timing diagram for write cycle.

• The read cycle begins in T1 with the assertion of address latch enable (ALE)

signal and also M / IO signal. During the negative going edge of this signal,

the valid address is latched on the local bus

• The BHE and A0 signals address low, high or both bytes. From T1 to T4 ,

the M/IO signal indicates a memory or I/O operation.

• At T2, the address is removed from the local bus and is sent to the output.

The bus is then tristated. The read (RD) control signal is also activated in

T2.

• The read (RD) signal causes the address device to enable its data bus

drivers. After RD goes low, the valid data is available on the data bus.

• The addressed device will drive the READY line high. When the processor

returns the read signal to high level, the addressed device will again

tristate its bus drivers.

• A write cycle also begins with the assertion of ALE and the emission of the

address.

• The M/IO signal is again asserted to indicate a memory or I/O operation. In

T2, after sending the address in T1, the processor sends the data to be

written to the addressed location.

• The data remains on the bus until middle of T4 state. The WR becomes

active at the beginning of T2 (unlike RD is somewhat delayed in T2 to

provide time for floating).

• The BHE and A0 signals are used to select the proper byte or bytes of

memory or I/O word to be read or write.

• The M/IO, RD and WR signals indicate the type of data transfer as

specified in table below.

Hold Response sequence:

• The HOLD pin is checked at leading edge of each clock pulse. IfIf it is

received active by the processor before T4 of the previous cycle or during

T1 state of the current cycle, the CPU activates HLDA in the next clock

cycle and for succeeding bus cycles, the bus will be given to another

requesting master.

• The control of the bus is not regained by the processor until the requesting

master does not drop the HOLD pin low.

• When the request is dropped by the requesting master, the HLDA is

dropped by the processor at the trailing edge of the next clock.

Maximum Mode 8086 System

• In the maximum mode, the 8086 is operated by strapping the MN/MX pin

to ground.

• In this mode, the processor derives the status signal S2, S1, S0. Another

chip called bus controller derives the control signal using this status

information .

• In the maximum mode, there may be more than one microprocessor in

the system configuration. The components in the system are same as in

the minimum mode system.

• The basic function of the bus controller chip IC8288, is to derive control

signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc.

using the information by the processor on the status linline.

• The bus controller chip has input lines S2, S1, S0 and CLK. TheseThese

inputs to 8288 are driven by CPU.

• It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC

and AIOWC. The AEN, IOB and CEN pins are specially useful for

multiprocessor systems.

• AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The

significance of the MCE/PDEN output depends upon the status of the IOB

pin.

• INTA pin used to issue two interrupt acknowledge pulses to the interrupt

controller or to an interrupting device.

• IORC, IOWC are I/O read command and I/O write command signals

respectively . These signals enable an IO interface to read or write the data

from or to the address port.

• The MRDC, MWTC are memory read command and memory write

command signals respectively and may be used as memory read or write

signals.

• All these command signals instructs the memory to accept or send data

from or to the bus.

• Here the only difference between in timing diagram between minimum

mode and maximum mode is the status signals used and the available

control and advanced command signals.

• R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will

output a pulse as on the ALE and apply a required signal to its DT / R pin

during T1.

• In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it

will activate MRDC or IORC. These signals are activated until T4.

• For an output, the AMWC or AIOWC is activated from T2 to T4 and MWTC

or IOWC is activated from T3 to T4.

• The status bit S0 to S2 remains active until T3 and become passive during

T3 and T4.

• If reader input is not activated before T3, wait state will be inserted

between T3 and T4.

Interrupt
An INTERRUPT is a condition that causes the microprocessor to
temporarily work on a different task and then return to its previous task.
Interrupt is an event or signal that request to attention of CPU.

Whenever an interrupt occurs the processor completes the execution of
the current instruction and starts the execution of an Interrupt Service
Routine (ISR) or Interrupt Handler. ISR is a program that tells the
processor what to do when the interrupt occurs. After the execution of
ISR, control returns back to the main routine where it was interrupted.

Whenever an interrupt is occurred, it will be acknowledged by the
processor at the end of the current memory cycle. The processor then
services the interrupt by branching to a special service routine written to
handle that particular interrupt. Upon servicing the device, the processor
is then instructed to continue with what is was doing previously by use of
the "return from interrupt" instruction.

The status of the program being executed must be saved first. The
processors registers will be saved on the stack, or at very least, the
program counter will be saved. Preserving those registers which are not
saved will be the responsibility of the interrupt service routine. Once the
program counter has been saved, the processor will branch to the
address of the service routine.

Figure: Interrupt processing flow

Purpose of Interrupts
As we studied, the Microprocessor can serve several devices. There are
two ways to offer service: Interrupts and Polling.

x. The advantage of interrupts is that the microprocessor can serve many
devices (not all at the same time, of course); each device can get the
attention of the microprocessor based on the priority assigned to it.

xi. The polling method cannot assign priority because it checks all
devices in a round-robin fashion.

xii. More importantly, in the interrupt method the microprocessor can also
ignore (mask) a device request for service.

xiii. This is not possible with the polling method.
xiv. The most important reason that the interrupt method is preferable is

that the polling method wastes much of the microprocessor’s time by
polling devices that do not need service.

xv. So interrupts are used to avoid tying down the microprocessor.
To understand the difference better, consider this example. The polling
method is very much similar to a salesperson. The salesman goes door-

to-door requesting to buy his product. Like processor keeps monitoring
the flags or signals one by one for all devices. Interrupt is very similar to a
shopkeeper. Whosever needs a service or product goes to him and
approaches him. Like, when the flags or signals are received, they notify
the processor that they need its service.

Interrupts are useful when interfacing I/O devices with low data-transfer
rates, like a keyboard or a mouse, in which case polling the device
wastes valuable processing time

Above time line shows typing on a keyboard, a printer removing data from
memory, and a program executing. The keyboard interrupt service
procedure, called by the keyboard interrupt, and the printer interrupt
service procedure each take little time to execute

Types of Interrupts

In general there are two types of Interrupts:

• Internal (or) Software Interrupts are triggered by a software instruction
and operate similarly to a jump or branch instruction.

• External (or) Hardware Interrupts are caused by an external hardware
module.

SOFTWARE INTERRUPTS–
INT nn is invoked software (sequence ofcode)

Examples:

• DOS INT 21H, BIOS INT 10H.

• INT 00 (divide error)

• INT 01 (single step)

• INT 03 (breakpoint)

• INT 04 (signed number overflow)
HARDWARE INTERRUPTS
Hardware interrupts are generated by hardware devices when something
unusual happens; this could be a key-press or a mouse move or any
other action.

Maskable Interrupts:
The processor can inhibit certain types of interrupts by use of a special
interrupt mask bit. This mask bit is part of theflags/condition code register,
or a special interrupt register. In the 8086 microprocessor if this bit is
clear, and aninterrupt request occurs on the Interrupt Request input, it is
ignored.

Non-Maskable Interrupts:
There are some interrupts which cannot be masked out or ignored by the
processor. These are associated with highpriority tasks which cannot be
ignored (like memory parity or bus faults). In general, most processors
support the Non-Maskable Interrupt (NMI). This interrupt has absolute
priority, and when it occurs, the processor will finish thecurrent memory
cycle, then branch to a special routine written to handle the interrupt
request.

Interrupt Service Routine
For every interrupt, there must be an interrupt service routine (ISR), or
interrupt handler. When an interrupt is invoked, the microprocessor runs
the interrupt service routine. For every interrupt, there is a fixed location in
memory that holds the address of its ISR. The group of memory locations
set aside to hold the addresses of ISRs is called the interrupt vector table.

When an interrupt is occurred, the microprocessor stops execution of
current instruction. It transfers the content of program counter into stack.
It also stores the current status of the interrupts internally but not on
stack. After this, it jumps to the memory location specified by Interrupt
Vector Table (IVT). After that the code written on that memory area will

execute.

Interrupt Vector Table
The first 1Kbyte of memory of 8086 (00000 to003FF) is set aside as a
table for storing thestarting addresses of Interrupt Service
Procedures(ISP).Since 4-bytes are required for storing starting addresses
of ISPs, the table can hold 256 Interrupt procedures.

The starting address of an ISP is often called theInterrupt Vector or
Interrupt Pointer. Therefore the table is referred as Interrupt Vector Table.
In this table, IP value is put in as low word of thevector & CS is put in high
vector.

8086 Interrupts
We are aware of the fact that the interrupt can be either hardware or
software. If the interrupts are generated by the inbuilt devices, like timers
or by the interfaced devices, they are called as hardware interrupts. If the
interrupts are generated by the software code, they are called as software
interrupts.

In other words an 8086 interrupt can come from any one of three sources.

• An external signal applied to the non-maskable interrupt (NMI) input
pin or to the interrupt input pin (HARDWARE INTERRUPT).

• Execution of the interrupt instruction (SOFTWARE INTERRUPT)

• Some error condition produced in the 8086 by the execution of an
instruction.

Example:
If you attempt to divide an operand by zero, the 8086 will automatically
interrupt the currently executing program. At the end of each instruction
cycle, the 8086 checks to see if any interrupts have been requested. If an
interrupt has been requested, the 8086 responds to the interrupt by
stepping through the following series of major actions:

• It decrements the stack pointer by 2 and pushes the flag register on
the stack.

• It disables the 8086 INTR interrupt input by clearing the interrupt flag
in the flag register.

• It resets the trap flag in the flag register.
• It decrements the stack pointer by 2 and pushes the current code

segment register contents on the stack.

• It decrements the stack pointer again by 2 and pushes the current
instruction pointer contents on the stack.

Divide-By-Zero Interrupt-Type 0:
The 8086 will automatically do a type 0 interrupt if the result of a DIV
operation or an IDIV operation is too large to fit in the destination register.
For a type 0 interrupt, the 8086 pushes the flag register on the stack,
resets IF and TF and pushes the return addresses on the stack.

Single Step Interrupt-Type 1:
The use of single step execution feature is found in some of the monitor &
debugger programs. When we tell a system to single step, it will execute
one instruction and stop. We can then examine the contents of registers
and memory locations.

In other words, when in single step mode a system will stop after it
executes each instruction and wait for further direction from user. The

8086 trap flag and type 1 interrupt response make it quite easy to
implement a single step feature direction.

Non-maskable Interrupt-Type 2:
The 8086 will automatically do a type 2 interrupt response when it
receives a low to high transition on its NMI pin. When it does a type 2
interrupt, the 8086 will push the flags on the stack, reset TF and IF, and
push the CS value and the IP value for the next instruction on the stack. It
will then get the CS value for the start of the type 2 interrupt service
procedure from address 0000AH and the IP value for the start of the
procedure from address 00008H.

Breakpoint Interrupt-Type 3:
The type 3 interrupt is produced by execution of the INT3 instruction. The
main use of the type 3 interrupt is to implement a breakpoint function in a
system. Whenever we insert a breakpoint, the system executes the
instructions up to the breakpoint and then goes to the breakpoint
procedure.

Overflow Interrupt-Type4:
The 8086 overflow flag will be set if the signed result of an arithmetic
operation on two signed numbers is too large to be represented in the
destination register or memory location.

Example: If we add the 8 bit signed number 01101100 and the 8 bit
signed number 010111101, the result will be 10111101. This would be
the correct result if we were adding unsigned binary numbers, but it is not
the correct signed result.

Software Interrupts-Type O through 255:
The 8086 INT instruction can be used to trigger the 8086 to do any one of
the 256 possible interrupt types. The desired interrupt type is specified as
part of the instruction.

The instruction INT32, for example will cause the 8086 to do a type 32
interrupt response. The 8086 will push the flag register on the stack, reset
TF and IF, and push the CS and IP values of the next instruction on the
stack.

INTR Interrupts-Types 0 through 255:
The 8086 INTR input allows some external signal to interrupt execution of

a program. Unlike the NMI input, however, INTR can be masked so that it
cannot cause an interrupt. If the interrupt flag is cleared, then the INTR
input is disabled. IF can be cleared at any time with CLEAR instruction.

Figure: 8086 Interrupt Instructions.

Interrupt Priority
If two or more interrupts occur at the same time then the highest priority
interrupt will be serviced first, and then the next highest priority interrupt
will be serviced.

Example: If suppose that the INTR input is enabled, the 8086 receives an
INTR signal during the execution of a divide instruction, and the divide
operation produces a divide by zero interrupt. Since the internal
interrupts-such as divide error, INT, and INTO have higher priority than
INTR the 8086 will do a divide error interrupt response first.

The interrupt that has a lower address, has a higher priority.

For example, the address of external interrupt 0 is 2, while the address of
external interrupt 2 is 6; thus, external interrupt 0 has a higher priority,
and if both of these interrupts are activated at the same time, extern al
interrupt 0 is served first.

8086 Interrupt Pins and Timing

3. INTR: Interrupt Request. Activated by a peripheral device to interrupt
the processor.

1. Level triggered. Activated with a logic 1.

4. INTA: Interrupt Acknowledge. Activated by the processor to inform the
interrupting device the interrupt request (INTR) is accepted.

1. Level triggered. Activated with a logic 0.
5. NMI: Non-Maskable Interrupt. Used for major system faults such as

parity errors and power failures.
1. Edge triggered. Activated with a positive edge (0 to 1) transition.
2. Must remain at logic 1, until it is accepted by the processor.
3. Before the 0 to 1 transition, NMI must be at logic 0 for at least 2

clock cycles.
4. No need for interrupt acknowledgement.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

This dig is the internal architecture of 8051

Scanned by CamScanner

This Dig is the block diagram of 8051

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	Chapter 5 : Microprocessor(Architecture and Programming-16 bit-8086).
	General bus operation of 8086

